Forschung für die Elektroniksysteme von morgen

R. Aschenbrenner
Outline

Trends in Advanced Packaging
Was ist Panel Level Packaging
Embedding für Fan Out
Embedding für LP
Beispiele
Trend on ICs and Packages 2D -> 3D

Intrinsic full 3D

3D by TSV

2.5 D IC Interposer 3D IC Chip w TSV

3D by Via

PoP

PCB Embedding 3D FO-WLP

Limited 3D by Wire, Bump and Ball

Stacked Die

Hybrid

2D

Wire bonded

Leadframe

Side-by-side Wire bonded

Side-by-side Flip Chip

Side-by-side FO-WLP

1995 2000 2015

Source: ASE and IZM

© Fraunhofer IZM
• Organic interconnect density is rapidly approaching Si-BEOL
Intel’s Silicon Bridge

- Embedded Multi-die Interconnect Bridge (EMIB) available to Intel’s 14nm foundry customers
- A small silicon bridge chip is embedded into the package (no TSVs)
- Micro bumps on chips and communication between chips through interposers
- Package substrate is provided by substrate supplier (no info on substrate price)
- Considered less expensive because only small area for high-density silicon and no TSVs

Source: Intel.
IPHONE 7 ADOPTS FAN-OUT WAFER LEVEL PACKAGING INSTEAD OF PCB

Deshalb ist InFO-WLP so wichtig
Die Technologie zur Chip-Anbringung, die TSMC nutzt, wird InFO-WLP genannt (eigentlich „Integrated Fan-Out Wafer-Level Packing“. Sie unterscheidet sich von der herkömmlichen Methode, bei der CPU oder SoC via Lötperlen auf PCB angebracht werden.
iPhone 7 Processor – Memory Integration

Source: Prismark Partners

APPLE A10 FUSION

- 14.4 x 15.5mm InFO PoP Package
 - ~1300 balls at 0.4mm pitch
 - 825µm package height

- Memory package with 5 die (4 shown)
 - Die Thickness: 105µm
 - 170µm EMC thickness over die
 - 3L substrate; 100µm thick
 - 386 balls at 0.3mm pitch
 - Underfill between packages

- Processor: 11.6 x ~10.8mm
 - 165µm thick; 12µm “top coat”
 - 50µm thick 3 Layer RDL

Photos source: Prismark/Binghamton University
FAN-OUT ACTIVITY MARKET FORECAST WITH APPLE ENTRY

Fan-Out activity revenues forecast ($M)

Breakdown by Fan-Out market type

- **$3 000M**
 - Entry of A10 APE of iPhone 7, 7+ and newer from 2016 → 2016–2021. CAGR is estimated at 40%!

- **$2 500M**
 - After the first jump, further acceptance by players other than Apple (Mediatek? Samsung? Qualcomm?) is appearing, maintaining the growth.

- **$2 000M**
 - Market estimated to exceed $2.5B by 2021.

- **$1 500M**
 - Intel Mobile/Infineon eWLB-driven
 - CAGR > 30%

- **$1 000M**
 - Transition phase
 - CAGR ~ 10%

- **$500M**
 - "Core" Fan-Out

- **$80M**
 - "High Density" Fan-Out

Scenario 2: Apple example will show the way to competitors

Executive Summary

4.

Confirmation phase: Apple keeps it APE in FO and other players follow the trend.

~$2.5B
Panel Level is: The intelligent combination of Wafer Level Processing, FO WLP and PCB Embedding

- Finer lines and spaces in combination with semiconductor equipment and organic substrates
- Embedding of bare dies into organic substrates
- Glass, PCB, Filled Epoxy

“Fusion” of semi WLP / LCD / PCB / Solar / flexible electronic infrastructures

- Finer lines and spaces in combination with semiconductor equipment and organic substrates
- Embedding of bare dies into organic substrates
- Glass, PCB, Filled Epoxy
Zusammenfassung: Interconnect Resolution Trend

CMOS Processing Capabilities

1970
Through hole

1980
SMD

1990
CSP’s/BGA’s
SiP’s

2000
WLCSP,
Flip Chip BGA

2010
3D-IC, TSV,
FO-WLP

2020
Organic Interposer?
Fo-PLP

PCB Process Capabilities

610 mm x 456 mm
510 mm x 515 mm

60 nm

10 nm

300 mm

0,5 µm L/S

2 µm L/S

© Fraunhofer IZM
TECHNICAL GAPS BETWEEN THE WAFER AND PCB INFRASTRUCTURES

Filled by the panel infrastructure

A variety of Advanced Substrates are competing today to close the L/S<15/15 um gap!

Between the front-end and PCB areas, a gap exists in terms of cost structure, technical features and infrastructures.

Low cost solution required

- Si interposer
- Glass Panel interposer
- FO WLP
- FO PLP
- Embedded die Packaging
- Advanced Flip Chip Substrate

Line/Space (L/S)

- 2 µm
- 5 µm
- 8 µm
- 20 µm
Merging of Wafer Level and PCB Technologies

Fan-Out WLP and Embedded Die Technologies

Embedded Packaging Technologies

Die Embedding in Organic Laminate "Embedded Die"

- Fan-In Type
 - Chip-First: NA
 - Chip-Last: ECP (ATS), SESUB (TDK), i2Pack, µ²Pack (Schweizer), WFOP (J-Devices), BLADE (Infineon), BossB2it, B2ItPWB (Dai Nippon), ChipsetT/ChipletT (FlipChip/TSHT, Fujikura), aEASI (ASE), EOMIN (Taiyo Yuden), Clover embedded device (Unimicron), MCeP (Shinko), EMIB/Si-Bridge (Intel), EWLP (Imbera), EMAP (GPRC)

- Fan-Out Type
 - Chip-First: WLCSP+ (NANIUM), eWLCSP (STATS)
 - Chip-Last: eWLB, aWLP, WLFO (Infineon, JCET STATS ChipPAC, ASE, NANIUM), RCP (Freescale/NXP, Nepes), M-Series (DECA), InFO (TSMC), WLFO (Amkor), ADL/SinoChip, FOWLP (SPI), N1 (SPI), WFP (Samsung)

Die Embedding in Epoxy Moldcompound "Fan-Out WLP/PLP"

- Fan-In Type: Solutions that can be categorized as Advanced Flip Chip technologies:
 - FOCLP (ASE)
 - SWIFT (Amkor)
 - SLIM (Amkor)
 - RDL-First FOWLP (IME)
 - HDL (QPL)
 - FC-MISBGA (SPI)
 - EMIB/Si-Bridge (Intel)

- Fan-Out Type
 - Chip-First
 - Chip-Last

Source: Steffen Kroehnert, NANIUM
FOWLP/FOPLP Process Flow Steps

Mold first
- Apply thermal release tape on carrier
- Die assembly on carrier
- Wafer/panel overmolding
- Carrier release
- RDL (e.g. thin film, PCB based, ...), balling, singulation

RDL first
- Apply release layer on carrier
- RDL (e.g. thin film, PCB based, ...)
- Die assembly on carrier
- Wafer/panel overmolding
- Carrier release, balling, singulation
Example: FO-Packaging of a Multi-Sensor System

- Functional tests show sensor performance in specs

- Pressure sensor/ASIC package with thin film RDL
- Acceleration sensor/ASIC package with PCB based RDL and Through Mold Vias (TMV) for package stacking
- Assembled sensor stack on test board
Roadmap Fan-Out Panel Level

FOWLP 1st-gen - single die
- BB SoC
- RF Transceiver
- ASIC
- PMIC

FOWLP 2nd-gen - MCP/SiP/Pop
- DRAM memory
- NAND Flash memory
- APE/BB modem
- RF Tx, RF connectivity
- PMU/PMIC
- GPS
- MOEMS

204x508mm - Semi/PCB laminate substrate
515x410mm, 500x650mm & 450x610mm – PCB laminate
470x370mm – LCD Gen 2

650x830mm – Gen 4 LCD
650x650mm – WLP/LCD/PCB

Source: Yole

Rolf Aschenbrenner
© Fraunhofer IZM
PLPC – Current Status

performance
\(f(L/S, \text{pitch}, \text{no. dies}, \ldots) \)

cost

WL

PL
Molding Compounds for Large Area Encapsulation

Liquid Compression Molding Compounds
- Standard material for wafer level embedding
- **Paste-like material** is dispensed in the cavity and flows during tool closing and compression of the tooling
- **Limited potential for large area due to complex dispense patterns needed and longer flow length?**

Granular Compression Molding Compounds
- Standard material for MAP compression molding
- **Granular material** is distributed nearly homogeneously all over the cavity and melts and the droplets have to fuse during closing and compression of the tooling
- **No limitations for large area application**

Sheet Lamination Molding Compounds
- Standard material for wafer level embedding
- **Material sheets** are melting and only flow around dies for encapsulation
- Sheets in defined thicknesses/volume
- **No limitations for large area application**
- €€€

© Fraunhofer IZM
Panel Mold Embedding Technologies

Compression Molding

- Standard process for MAP molding and WL mold embedding
- Use of liquid or granular compounds
- Tooling adapted to wafer size needed
- Thickness control by material weight
- Molding at constant temperature
- Typically an electro-mechanical press
- Current max. mold area: 0/300 mm

Lamination

- Standard process in PCB manufacturing
- Use of sheets is standard, use of granular or liquid compounds is feasible
- No expensive tooling needed
- Thickness control needed
- Lamination with temperature profile (heating/cooling)
- Typically a hydraulic press
- Current max. sheet size: 610x457 mm²
Compression Mold vs. Lamination - Press Profile

Compression Molding

- Short cycle time
- Constant temperature
 - -> no heating or cooling ramps
- No full compression pressure over longer time
- PMC and mold release extra process steps

Lamination

- Long cycle time, but multi-stack lamination is standard
- Heating or cooling ramps
- Full compression pressure over longer time
- PMC and mold release can be included
Panel Packaging Process Step Tasks To Solve

- **Equipment**
 - Tape laminator
 - Available automatic equipment?
 - Pick and Place
 - Accuracy on panel size?
 - Material application
 - Dispensing, sprinkle, …
 - Molding
 - Uniformity, thickness control, …
 - Debonder
 - Available automatic equipment?
 - Lithography
 - Stepper, laser ablation, LDI
 - Sputtering, plating
 - Thickness variation, lines & spaces
 - Thinning & Dicing
 - Available automatic equipment?

- **Material**
 - Carrier
 - steel, glass,..?
 - Thermo release tape
 - Alternatives?
 - EMC
 - liquid, granular, sheet?
 - Dielectric polymers
 - liquid or film?
 - photosensitive or not?
 - Sputter targets
 - Plating
 - Handling carrier
 - Tape or other material
 - Temporary adhesives

- **Still a lot of open issues and questions**
Embedding Technology - First Level Interconnection

First level chip interconnection technologies inside a package:

- **chip & wire**: established
- **flip chip**: smallest in 2D
- **chip embedding**: smallest in 3D
Power Electronics Packaging

- wire-bonded power chips on DCB
- planar packages & module with embedded power chips

Traditional Power modules

- single module manufacturing

Planar Power Packaging

- embedded MOSFET
- large panel manufacturing
 - low inductance
 - high heat transfer
 - high integration level
 - high productivity
Power Embedding - Principle Features

- Completely planar conductors
 - multiple wiring layers possible
 - **SMD assembly on top** allows driver integration
 - top side cooling possible
 - **very low parasitic effects**
- Direct connection by Cu conductors / no bond wires
 - high reliability by direct Cu to chip interconnects
 - shielding capability
- Embedding of power chips into Printed Circuit Board structures
 - cost saving by large area process ➔ Panel Level Packaging
Products – DC/DC Converter SiPs

- 650 mA DC/DC converter System-in-Package with embedded chip
- volume manufacturing

manufactured by AT&S

manufactured by TDK
Application – Infineon Blade Technology

SMD power package

- embedded Si MOSFET / Driver
- manufacturing on PCB format
Products – GaN Power Chip Package

GaNpx™ Packaging Technology

GaNpx™ Packaging

Low inductance, low Θ_J, small footprint vs. traditional packages

100V / 60A Part in 5mm x 5mm

No wire bonds:
Extremely low inductance

Thick copper:
Extremely low R_{on}

Fully-embedded die:
Reliability

PCB Material:
High temperature performance

courtesy AT&S/GaN Systems
Embedded Die Packages/Modules for different power classes

- Reduction in volume and form factor
- Low inductive interconnect to embedded die
- Improved electrical performance due to optimized switching behavior and reduced switching losses
- Improved reliability, active and passive testing

50W Schottky diode package
500W Pedelec Module
10kW+ Inverter modules

PROJECT HJI-LEVEL

50W Schottky diode package

Rolf Aschenbrenner
© Fraunhofer IZM
The European EmPower Project

- Embedded power components for electric vehicle applications
- Started in September 2013, duration 3 years
- Project goals:
 - Industrialize double sided copper plating on wafer level
 - Industrialize next generation automotive power modules
- Benefits:
 - High performance power products with embedded MOSFET, IGBT, GaN, etc.
 - Smallest form factor power supplies
- Partners:

http://catrene-empower.ats.net

Rolf Aschenbrenner
© Fraunhofer IZM
Project EmPower - Demonstrators

Diode Demonstrator
• double diode package
• 2 diodes embedded
• status: demonstrator realized, reliability tests ongoing

500 W Demonstrator
• pedelec inverter
• 24 V, 20 A
• 6 MOSFETs embedded
• control logic embedded in separate module
• status: demonstrator realized, reliability tests ongoing

50 kW Demonstrator
• automotive inverter
• 600 V, 200 A, 3 phases
• 24 IGBTs, 24 diodes embedded
• status: development ongoing
500 W Demonstrator – Concept

- Embedded-logic Module ILFA
- SMD-logic Module ILFA
- Power Core AT&S
- IMS Bottom ILFA
- Adhesive Continental
- IMS Top ILFA
- MOSFETs ST
- Cu Inlays AT&S

Solder process → Conti
Demonstrator-Assembly → Conti
Cu Inlay & MOSFET-Embedding → AT&S
IMS-Sintering → TU Berlin

© Fraunhofer IZM
Sinter/Lamination Interconnection – Cross Section

cross section of IMS/power core/IMS sinter interconnects

⇒ no large voids in Ag sinter interconnects
Sinter Interconnects – X-Ray Inspection

X-ray of sintered top IMS / PowerCore / bottom IMS

→ good alignment (± 50 µm) of all sintered layers

Rolf Aschenbrenner
© Fraunhofer IZM
Concept 3D Stacking

What is a 3D Power Stack?
• Stacking of Functional Layers by combined sinter/lamination technology
Concept 3D Stacking

Stacking by combined sinter/lamination ➔ Process Flow

- Stacking of Functional Layers by combined sinter/lamination technology

1. stencil printing of Ag sinter paste on Functional Layer, paste drying

2. lay-up of prepreg sheet with opening for paste locations

3. lay-up of 2. Functional Layer on top, vacuum lamination at 3 MPa, 10 min./230 °C, 60 min./200 °C

Result: a monolithic stack, thermally and electrically interconnected by high-reliable Ag joints, all gaps are filled by an isolating dielectric

© Fraunhofer IZM

Rolf Aschenbrenner
sufficiently low amount of micro voids in sintered Ag (< 30 %)
Power Embedding – Production and R&D

- DC/DC converter SiPs
- Blade Packages
- R&D and Customer Projects
- 1 MW
- Production
- R&D Si
- R&D SiC

Rolf Aschenbrenner

© Fraunhofer IZM
Case study: automotive industry supply chain

- Electrified vehicles are seen as a very promising market, which is constantly attracting new players. For instance, Siemens is currently a major manufacturer or rail applications for power electronics. They have recently presented an inverter to be used in hybrid vehicles for the first time.

- Continental have proposed a fully integrated power electronics solution with its own power module.

- Apart from car makers, a very few companies are involved only at one level (power module for Danfoss or Semikron, inverter for Siemens).

Many companies are involved in the increasingly attractive market for electrified vehicles.
EVOLUTION OF POWER ELECTRONICS LANDSCAPE

Evolution of business models?

- Power module manufacturing is an area of tough competition; module-only manufacturers must develop high performance products to stay competitive.
- Additionally, more and more car makers are willing to venture into the market at inverter level to differentiate themselves from competitors.

With such strong growth in the application, changes in business models are expected.
MoMiCa – Modular Camera Module

Motivation
• to develop a miniaturized camera module with integrated image processing
• using PCB PLP embedding

Potential Applications
traffic lane recognition
face / gender recognition
MoMiCa – Camera Module

Geometry
• 16 x 16 x 3.6 mm³, weight 2 g w/o lens

PCB Layers
• 2 + 8 + 1 construction
• 8 layer core with stacked microvias

Embedded Components
• 32 bit microcontroller with image sensor interface (CogniVue CV2201 BGA 236)
• 256 Mbit Flash Memory (Macronix 8WSON)
• MOSFET switch (IRF SOIC)
• USB ESD protection (NXP SOT457)
• 5 DC/DC-converters (Murata)
• oscillator 24 MHz (NXP)
• 2 LEDs (0402)
• 34 capacitors (0201, 0603)
• 25 resistors (0201)
• 3 inductors (0603)

Components on top
• 3 MPixel Image Sensor Omnivision 3642
• lens CMT746 + lens holder
• 7 capacitors (0201)
• 1 resistor (0201)
• 1 inductor (0603)
• 1 microswitch

Rolf Aschenbrenner
© Fraunhofer IZM
MoMiCa - Layer Sequence

SMD Bildsensor
2 Lagen Kern
Bauelemente
3 Build-up Lagen
2 Lagen Kern
3 Build-up Lagen
Bauelemente
Außenlage
MoMiCa – Camera Module

Modular camera with integrated 32 bit image processor and memory

- 3 M-pixel image sensor
- 32 bit microcontroller
- Capacitor
- DC/DC converter
- Flash memory
Panel level embedding: A platform for many applications with improved reliability!
Conclusions

- Panel-level Packaging will gain a significant market share
- There will be a fusion of different technologies
- FO WLP will evolve towards large panels
- PCB technology will evolve towards very high density

... it just started - take the opportunity!
Thanks for your attention!